S.B. PATIL COLLEGE OF SCIENCE \& COMMERCE, RAVET

Sr. no. 110, Gate No 1, Ravet, Pune- 412101

Unit Test -I 2020-21

Section A

Q. 1 Select and write most appropriate answer from the given alternatives for each subquestion.

1. If $\mathrm{y}=e^{\sin ^{-1} x}$ and $\left(1-\mathrm{x}^{2}\right)\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}=\mathrm{A} \mathrm{y}^{2}$ then $\mathrm{A}=$ \qquad
a) m
b) $-m$
c) m^{2}
d) $-m^{2}$
2. If $\log _{10}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=2$ then $\frac{d y}{d x}=--------$
a) $\frac{-99 x}{101 y}$
b) $\frac{99 x}{101 y}$
c) $\frac{-99 y}{101 x}$
d) $\frac{99 y}{101 x}$

Q. 2 Answer the following questions

1. Differentiate $\sin \left(x^{2}+x\right)$ with respect to x.
2. Find $\frac{d y}{d x}$ if $x+\sqrt{x y}+y=1$
3. Find the approximate value of $\sqrt{8.95}$

Section B

Attempt any Four of the following. [2x4]

Q. 3 Differentiate following function with respect to x , $\left(\sqrt{3 x-5}-\frac{1}{\sqrt{3 x-5}}\right)^{5}$.
Q. 4 Find the equation of tangent and normal to the curve at the point on it,

$$
x^{2}-\sqrt{3} x y+2 y^{2}=5 \text { at }(\sqrt{3}, 2)
$$

Q. 5 Using the derivative prove that , $\tan ^{-1} \mathrm{x}+\cot ^{-1} \mathrm{x}=\frac{\pi}{2}$
Q. 6 Find approximate value of (3.97) ${ }^{4}$.
Q. 7 Find $\frac{d^{2} y}{d x^{2}}$ if $x=a \cos \theta$ and $y=b \sin \theta$ at $\theta=\frac{\pi}{4}$
Q. 8 check whether conditions of Rolle's theorem are satisfied by the following function,

$$
F(x)=x^{2}-2 x+3, x \in(1,4)
$$

Section C

Attempt any Two of the following \{2x3] Q. 9 To Q. 11

Q. 9 A spherical soap bubble is expanding so that its radius is increasing at the rate of $0.02 \mathrm{~cm} / \mathrm{sec}$. At what rate is the surface area is increasing, when its radius is 5 cm ?
Q. 10 If $\operatorname{Sec}^{-1}\left(\frac{7 x^{3}-5 y^{3}}{7 x^{3}+5 y^{3}}\right)=m$, show that $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=0$
Q. 11 verify Lagrange's mean value theorem for the following functions, $f(x)=x^{2}-3 x-1$, $x \in\left(\frac{-11}{7}, \frac{13}{7}\right)$

Section D

Attempt any One of the following

Q 12. If $y=f(x)$ is a differential function of x on the interval I and y is one one, onto and

$$
\frac{d y}{d x} \neq 0 \text { On I. Also if } f^{-1}(y) \text { is differentiable on I then } \frac{d}{d y}\left[f^{-1}(y)\right]=\frac{1}{f^{\prime}(x)} \text { or } \frac{d x}{d y}=\frac{1}{\frac{d y}{d x}}
$$

$$
\text { where } \frac{d y}{d x} \neq 0
$$

Q. 13 If $x^{m} \cdot y^{n}=(x+y)^{m+n}$, then prove that $\frac{d y}{d x}=\frac{y}{x}$

